
NISTIR 6148

Information

Technology Evaluation of Applications on

Laboratory
a Loosely-Coupled Cluster

High Performance Systems
and Services Division

Wayne Salamon
Alan Mink

Mike Indovina

Michel Courson

U.S. DEPARTMENT OF COMMERCE
Technology Administration

National Institute of Standards and Technology

Gaithersburg, MD 20899

April 1998

DSTP
DISTRIBUTED SYSTEMS
TECHNOLOGY PROJECT

J

NISTIR 6148

Evaluation of Applications on
a Loosely-Coupled Cluster

Wayne Salamon
Alan Mink
Mike Indovina

Michel Courson

U.S. DEPARTMENT OF COMMERCE
Technology Administration

National Institute of Standards and Technology

Information Technology Laboratory

High Performance Systems and Services Division

Bldg. 220, Room B124
Gaithersburg, MD 20899-0001

April 1998

U.S. DEPARTMENT OF COMMERCE
William M. Daley, Secretary

TECHNOLOGY ADMINISTRATION
Gary R. Bachula, Acting Under Secretary

for Technology

NATIONAL INSTITUTE OF STANDARDS
AND TECHNOLOGY
Raymond G. Kammer, Director

" PmW- L

' - n

\ ..

.'la
' V*..

ri ' ’X,
Si.

^1 td » ^
• T
J5. f-

t^m . f--yi
^

. 'isii .1 TA' .; ri

t
* * ,Xv

I^ ‘

'

i.i

' ^ I VT

s^va- 4rH

1:3

fi''

i,»Y. 'iW

n . i,

n . »

,

!<' £'> st/

;'tr ? / 'r'

fiiSt

'^^i

*.. '

* “ ,•

"’nfli' T_

Jp.

*1'

m"'.

'V K"-^

j,
-^>i»

'

:>«. ,MU’P

I -Jji' \i,
.

''' ' " .K^

,.'
. wSl«

'•.r V
'•'i

'*
•"' ^

^'V, ^ ., .

' Mjo' iKu

'1
j' ,

••'

i.’

'
_

.. '
Fb”

.' ^ '\:^

, /VjI

Tpr*'*. M'" - kM j*

Evaluation of Applications on a Loosely-Coupled Cluster
*

Wayne Salamon, Alan Mink, Mike Indovina and Michel Courson

High Performance Systems and Services Division

National Institute of Standards and Technology ^

{wsalamon,amink,mindovina,mcourson}@nist.gov

Abstract

NIST is building a distributed testbed of heterogeneous workstations connected via

am Asynchronous Transfer Mode (ATM) network. Currently, the ATM network clus-

ter consists of Sun, Silicon Graphics, and Intel-based workstations. The purpose of

the ATM cluster testbed is twofold, one is production and the other is research. The
production focus is concerned with evaluating the benefit of bringing ATM to the desk-

top and determining the scalability and viability of such an environment for some of

the NIST high performance computation workload. The research focus is concerned

with integrating performance measurement for application tuning and developing light

weight models that can be used to dynamically steer applications based on real-time

meaisurements. Our initial eflForts of porting and tuning parallel codes in this distributed

environment are discussed.

Key words: Computers, Cluster Computing, Distributed Computing, Networks,

ATM, Performance Measurement;

1 INTRODUCTION

As the availability of monolithic supercomputers decreases and the performance of relatively

inexpensive commodity microprocessor chips for workstations and PCs increases, the high

‘This work was partially sponsored by the Defense Advanced Research Projects Agency

^Contributions of the National Institute of Standards cind Technology (NIST) are not subject to copyright.

Certain commercial products are identified here in order to document our experiments. Identification of such

products does not imply endorsement by NIST.

1

performance computing community has embraced parallelism via distributed memory in

the form of cluster/networked computing. These clusters, running Parallel Virtual Machine

(PVM) or Message Passing Interface (MPI) message passing environments, may be highly

integrated, as in the IBM SP2, Convex Exemplar, or Cray T3 series, or more loosely coupled

as in Network of Workstations (NOW) [1, 2] and Cluster of Workstations (COW). The highly

integrated cluster machines incur a larger up-front capital expense, but their maintenance

costs are usually 20%, or less, per year. Since they are sold as a system, they are supported

by the manufacturer and have the “look-and-feel” of a unified system with a large number

of the necessary system wide utilities. The loosely coupled clusters represent more of the

do-it-yourself genre. They incur a lower up-front capital expense, but their maintenance

costs are usually much higher in terms of knowledgeable internal staff. There is no system

level support for such systems and they lack the “look-and-feel” of a unified system. Thus,

based on life cycle costs, it is not clear which cluster is less expensive. Nevertheless, the low

initial cost of NOWs, in trying to recover the unused cycles of existing networked machines,

and the promise of significant performance [1, 3] is compelling.

In an effort to investigate the potential of NOWs and COWs, NIST is building a dis-

tributed testbed of heterogeneous workstations connected via an Asynchronous Transfer

Mode (ATM) network[4]. Currently, the ATM network cluster consists of 20 Sun, Silicon

Graphics, and Intel-based workstations, soon to grow to 60 and beyond.

The purpose of the NIST ATM cluster testbed is twofold, one is production and the other

is research. The production focus is concerned with evaluating the benefit of bringing ATM
to the desktop and determining the scalability and viability of such an environment for some

of the NIST high performance computation workload. The research focus is concerned with

integrating performance measurement for application tuning and developing light weight

models that can be used to dynamically steer applications based on real-time measurements.

Performance measurement and tuning within this testbed will use a variety of tools,

among them are the NIST developed S-Check[5] and MultiKron[6, 7, 8], the on-chip per-

formance counters in newer microprocessors (UltraSparc, MIPS 10000, and Pentium-Pro),

as well as Unix provided resource information.

We are currently porting a number of applications to the cluster. These parallel applica-

tions use a message passing environment, PVM or MPI, to communicate between processes.

We will focus our measurement and analysis on two applications, a 3D Helmholtz solver ap>-

plication using PVM, and an Epitaxial Surface Growth application which uses MPI. The 3D

Helmholtz solver application performs its communication in the form of a all-to-all pattern.

The Epitaxial Surface Growth application communicates between neighboring processes.

Scalability and comparative performance analysis will be presented and discussed for these

applications.

2 CLUSTER DESCRIPTION

The NIST cluster computing testbed is built around existing scientific workstations and

PCs using a Fore ASX-1000 ATM switch for the network interconnect. The switch can be

2

configured with a mciximum of 16 modules. Each module can be either a single OC-12 (622

Mbps) port or four OC-3 (155 Mbps) ports, yielding a total of between 16 to 64 ports. Our
switch is configured as 60 OC-3 ports and one OC-12 port. The OC-12 port is for a future

connection to an ATM backbone switch.

The workstations cire connected to the ATM switch ports via an ATM interface card

and multi-mode fiber optic cable, consisting of separate transmit and receive fibers. We cire

currently using ATM interface cards from both Fore Systems (200E) and Efficient Networks

(ENI-155p). The software communicates using the Internet Protocol (IP), which in the ATM
network is Classical IP. All of the ATM connections are Switched Virtual Circuits (SVC),

set up via User-Network Interface (UNI) 3.0 and UNI 3.1 signaling.

The workstations include Silicon Graphics Indigo^ and Indy, Sun Sparc-10 and Ultra-

Sparc, and Pentium-Pro based personal computers running Linux. In addition to a few

IBM RS/6000s, DEC Alphas, and HP PA-RISCs, we have added 16 Pentium-Pro comput-

ers running Linux. Unlike the other machines which are the primary workstations of NIST
scientists, these Pentium-Pro machines are not assigned to anyone, and thus are available

at any time for cluster computing. All of the machines are dual-homed in that they are

connected to both a switched Ethernet LAN, as well as the ATM LAN (switch). All of the

network traffic normally associated with Unix networks (mail, NFS, etc.) occurs over the

Ethernet network. The ATM network is dedicated to the communication necessary for the

cluster computing work.

3 CASE STUDY 1 (3D Helmholtz Solver)

3.1 Application Description

Our first application is a Three-Dimensional Helmholtz Solver[9, 10], which implements a

matrix decomposition algorithm to solve elliptic partial diflferential equations, specifically

the Helmholtz equation. It was originally written in Fortran using the PVM communica-

tion library. We have converted the original program from Fortran to C, using the f2c

utility. For the C version, we have also modified the communication portions to use the

MPI communication interface standard. The MPI implementation used was Local Area

Multicomputer (LAM) from The Ohio Supercomputer Center.

The three-dimensional matrix, of size N^, is divided into N two-dimensional slices, of

size each. The application is restricted to matrix sizes that allow the slices to be evenly

distributed among the p processors, such that N/p is an integer. Thus each processor

operates on an N^/p portion of the matrix.

The Helmholtz Solver program is divided into three computational phases, each sepa-

rated by a communication phase. The first computational phase performs a Fast Fourier

Transform (FFT) on the matrix, followed by a communication phase to transpose the ma-

trix. The second computational phase invokes a linear systems solver on the matrix. This

is followed by another communication phase to again transpose the matrix. The final com-

putational phase performs an inverse FFT to return the solution matrix to its original

3

Figure 1: Computation time for 3D
Helmholtz on heterogeneous ATM cluster

Figure 2: Communication time for 3D
Helmholtz on heterogeneous ATM cluster

domain.

Each of the two FFT computational phases has a bimodal computational complexity,

depending on the sub-interval size which is A^/2 and constrained to be an integer. If the

sub-interval can be factored into single digit prime numbers, then an optimized FFT can be

invoked with a computational complexity of 0{N^ log2 (N) -I-). Otherwise a general

FFT is invoked with a computational complexity of 0{N'^ -1-). The linear systems

solver phase has a computational complexity of 0{N^).

Each of the two communication phases are identical, performing a transposition on the

3D matrix. Each processor manages an N^/p portion of the total data. In the communica-

tion phase each processor divides its portion of the data into p chunks, of size /p^ each,

and sends one chunk to each of the other p — 1 processors and receives an equal size chunk

from each of them. Thus a processor sends and then receives x (p — 1) data elements.

3.2 Performance Comparison

Our initial measurements of the Helmholtz solver program were on a 16-node heterogeneous

subset of the cluster. These measurements were divided into overall run-time (how long to

get my answer), computation time (time for all 3 computational phases), and communica-

tion time (time for each of the 2 communication phases, includes waiting time). These time

values are the maximums, showing the worst-case performance. For any given data set we
noticed a wide disparity in the communication time for the different processor types, as

expected. From these measurements and the structure of the code it was easy to conclude

that this code is indeed large-grained, applicable to loosely coupled cluster computing, and

that it is best suited to run on homogeneous nodes vs. heterogeneous ones. Figures 1 and 2

show the individual computation and communication times for several machines in the het-

4

erogeneous ATM cluster. The measurements illustrate that the computation times axe

consistent with processor speed. Thus the faster machines have shorter computation times

and longer communication times, indicating they are waiting for the slower machines to

finish their computations. The faster machines axe therefore under utilized. The two com-
munication phases provide a synchronization point between all the processors, because each
processor must wait to receive from all the others. When run on a homogeneous subset,

the computation and communication times are more uniform, indicating that less waiting

is occurring.

To verify the scalability of the Helmholtz solver program, we ran it on a 16 node subset

of our IBM SP2, a highly integrated cluster with a node-to-node communication bandwidth
of 400 Mbits/s, and an 8 node SGI Indigo^ subset of our ATM cluster. Figures 3 , 4 and 5

show the run time, computation time and communication time, respectively, for a fixed-size

problem. The long run time for the single node SGI is caused by paging due to insufficient

real memory (128M on the SGIs vs. 512M per SP2 node). As additional nodes cire added,

the SGI computation times drop dramatically, to even better than the SP2 system.

The graphs shown in Figures 3, 4 and 5 provide a comparison of the relative speeds

of oiu’ IBM SP2 and the SGI subset of our ATM cluster. For the computation phase, the

SGI cluster scales well, and out-performs the SP2. However, the overall run time does not

consistently reflect this higher computation performance, due to some erratic behavior of

the communication phase on the SGI cluster for low levels of parallelism. As can be seen in

Figure 5, the SP2 cluster has better communication behavior than the SGI cluster in the

region of low parallelism. As the parallelism increeises, the SGI cluster performs in a similar

manner to the SP2, with slightly better run times. We are not sure what causes the peaks

in the SGI communication.

A common approach in parallel computing is to scale the data along with the number of

processors so that each processor continues to operate on approximately the same amount
of data and incurs approximately the same amount of processing time. Figures 6, 7 and 8

show, for a scaled problem size, the run time, computation time, and the communication

time, respectively. Although one would expect an approximately flat curve for computation

time, there axe two factors which contribute to the variations shown.

First, to hold the per processor data constant requires to be constant, but the pro-

gram also requires N/p to be an integer so that the slices are distributed evenly. Satisfying

the second constraint causes AT’^/p to vary as much as 10%.

The second factor was more difficult to determine. We observed peaks in the com-

putation time that were not proportional to the data size variation. Our initial thoughts

regarding causes were poor data alignment resulting in cache thrashing or even virtual

memory paging. Our calculations indicated that the entire dataset should fit in primary

memory, with no paging. We then used the SGI perfex tool[ll] which utilizes the on-chip

performance registers of the RIOOOO processor. This allowed us to acquire the cache misses

incurred by our program. Unfortunately, this did not correlate with the computation time

variations. Using perfex further, we investigated the total number of instructions and the

number of floating point instructions executed. Here, we found a strong correlation with

5

Figure

5:

Communication

time

for

3D

Helmholtz

on

SP2

and

SGI

ATM

cluster

6

500

1

I

I

I

I

I

'

I

i

450

7

Figure

8:

Communication

time

for

3D

Helmholtz

with

scaling

problem

size

on

SGI

ATM

cluster

the computation time variations. This is where we were informed of the existence of the

optimized FFT of 0{N^ log2 {N')) vs. the general FFT of 0{N^), and its dependency on

the value N. Choosing a value N, such that it satisfies the criteria for the optimized FFT,

versus the general FFT, can cause variations of 100% in the computation time.

As can be seen in Figure 8, there is a large variation in communication times for different

processors in the SGI cluster. The pseudo code for the communication algorithm is:

for ? = 0 to p — 1

if (i != myself
)

send N^/p^ data elements to node i

receive N^/p^ data elements from node i

We used the S-Check Barrier test[12, 13] to determine communication delays. This

test provides a measure of the time variation between nodes completing their computation

phase, and thus delaying the transmission of their data. Our analysis of this algorithm

located the potential bottleneck in communication. When node i sends to node 0, node i

then waits to receive from node 0, but node 0 does not send to node i until it sends and

receives from nodes l...i — 1. Node i is forced to wait for its first receive, ignoring any

other data that has arrived. This waiting occurs for most of the other nodes, but is more

pronounced for the (p — 1)^^ node, because node i — 1 must wait until node i has finished its

communication. We revised the algorithm to first send everything, then to process receives

in the order they arrive, as shown in the following pseudo code:

for i = 0 to p — 1

if
(z != myself

)

send iV^/p^ data elements to node i

for = 0 to p — 2

receive /p^ data elements from any node

The results of this revised communication algorithm axe shown in Figures 9, 10 and 11

along with the results of the original communication algorithm. As can be seen, the revised

algorithm performs a.s much as 1.5 times faster. For the 2 node case both algorithms perform

in a similar manner, in that both algorithms execute one send of half of their data to the

other node and then execute one receive for the same amount of data. However, the revised

algorithm uses twice the memory of the original algorithm for communication bufifer space.

The reason is that the outgoing message buffers cannot be reused until an acknowledgment

is received from the target node, but this algorithm does not wait for acknowledgment for

each message.

A potential problem with this revised algorithm is that all nodes first send to node 0,

then to node 1, etc. If all nodes are homogeneous, then there is a significant probability

that simultaneous transfers from multiple sources to a single destination could overwhelm

the network/switch or flood the buffers of the PVM or LAM daemon handling the commu-

8

nications. Although we were expecting to see such behavior, it did not occur. No dropped
cells were reported from the ATM switch or the ATM receiver card. Most likely there was
a combination of things that prevented this from occurring. One is enough time variation

between nodes that they all do not send to the same node at the same time. Another is

sufficient buffering in the switch and receiving node to accommodate the burst of data. A
solution for this would be to stagger the transmission destinations of each node as illustrated

in the following pseudo code:

i = myself

for j = 0 to p — 1

i = i-\-\

if
{ f > p — 1)

i = 0

if
(

i != myself
)

send N^/p^ data elements to node i

for f = 0 to p—

2

receive N^/p^ data elements from any node

Figures 9, 10 and 11 show the LAM and PVM communication times for three different

problem sets. The LAM version initially provides better results than the PVM version for

up to a small number of processors. As the problem is scaled above five processors, the

PVM version performs better.

Although PVM has no flow control, it does have error control, so any lost messages

would be retransmitted causing additional traffic and longer communication times. While

the ATM switch and buffers were not overwhelmed, we do expect to see throttling of

the multiple byte streams as each node merges and sequentializes multiple streams. Both

throttling and retransmissions, we believe, are the cause of the peaks in Figures 9, 10 and

11 .

3.3 Evaluation

The 3D Helmholtz Solver is a large-grained application and was expected to scale well on our

cluster. For a fixed problem size, the overall execution time can be reduced by distributing

the problem over a number of processors. As the problem size grows, the overall execution

time can be kept about the same by distributing the problem over a number of processors.

If the problem size exceeds the main memory size, paging delays will degrade the execution

time more so than the communication delays. By distributing the problem over a number of

processors, the amount of memory required by each individual processor can be controlled

and the benefits of our faster ATM communications will prevail. Thus problem sizes that

are too large for a single machine, or a small number of processors, are now feasible over a

larger virtual machine.

Running the Helmholtz Solver on our SGI cluster compares favorably to running on

the IBM SP2 system. However, there are several caveats. First, the LAM and PVM

9

Figure

11:

Communication

time

for

3D

Helmholtz

with

IG-MByte

problem

size

on

SGI

ATM

cluster

10

communication libraries still have some erratic behavior, such as the much longer than

expected communication times at certain dataset sizes. Second, on a heterogeneous cluster,

adding nodes is not always beneficial, due to the synchronizing nature of the communication

dining the transposition phase. Adding a slower machine will force the other machines to

wait at a communication phase, thereby slowing down the overall computation. A “slower”

machine does not necessarily mean a slow architecture, but can mean “less responsive.” So,

for example, a machine that suddenly becomes busy with other work can slow down an

entire computation. In such cases the capability for processes to migrate to other machines

would be beneficial.

4 Case Study II (Epitaxial Growth Simulation)

4.1 Application Description

The molecular beam epitaxial growth (MBE) application uses Monte Carlo simulation tech-

niques to model the growth of layers of atoms sprayed onto a surface[14]. The MBE code,

written in C and using the MPI standard, iterates through a number of steps. Each step

represents the introduction of and the operation on a single atom. The simulation models

the number and distribution of atoms over the surface. Time is inferred from the probability

of the event that occurred during each step. Thus each step represents a variable amount

of time, the lower the probability the longer the time. During a step an atom is introduced

with a deposition rate determined by the generation of a random number. This rate is used

to traverse a rate tree. As the atom traverses the tree, its rate is reduced. When the rate of

the atom is reduced below that of the current surface position the atom is deposited there.

If the atom’s diffusion rate exceeds the local diffusion threshold, the atom diffuses to one

of the immediate neighboring cells. The step is completed when the deposition rate of the

atom’s final destination, and its immediate neighbors, axe updated, and the path used in

the deposition rate tree is recomputed.

The parallelized version subdivides the surface grid into uniform subgrids. Each proces-

sor executes a separate, but synchronized, step on its own subgrid, thereby generating one

atom per subgrid at each step. The interaction between processors occurs when an atom

lands on a boundary of its subgrid or diffuses across the boundary to a neighboring subgrid.

This information must be communicated to that neighbor, so that the cell population and

neighboring cell deposition rates are updated before the path through the subgrid rate tree

is recomputed. In addition, when a diffused atom crosses to a neighboring subgrid and

lands in the same grid cell as the atom from that subgrid, a conflict arises. Only one of

these two events can occur. The earlier event, the one with the highest probability, would

have changed the deposition rates so that the later event would have occurred differently.

The later event, the one with the lower probability, is canceled and the earlier event is

committed, and new rates are computed. The cancelation resulting from such a conflict

must also be communicated back to the original processor. If a corner cell is involved, then

two additional neighbors will have to be notifled.

11

Figure 12: Run, communication, compu-

tation times for MBE application, fixed

problem size

Figure 13: Run, communication, compu-

tation times for MBE application, scaling

problem size

Thus the phases of a parallelized step are; (1) generate an atom and determine its

destination, (2) synchronize and communicate those atoms that effect or cross a processor

boundary and resolve conflicts, and (3) commit the surviving atoms and update the deposi-

tion rate tree. Phases (1) and (3) are of computational complexity 0{log2{N^))i where

is the size of the subgrid, because the deposition rates are organized as a tree whose leaves

are the cells of the subgrid. Phase (2) is predominately synchronization and communication.

4.2 Performance Comparison

Our initial measurements were again divided into overall run time, computation time, and

communication time. These measurements on a fixed sized problem are shown in Figure 12.

Of importance to notice is that the communication dominates this parallel application.

Therefore, the single processor version is considerably faster than the multiprocessor ver-

sion since no communication is involved. For the multiprocessor version, acceleration does

occur, relative to the baseline multiprocessor version (either 2 or 4 processors), as addi-

tional processors are added. This acceleration is due to a smaller subgrid and less steps

per processor. An grid running 1600 steps on a single processor, uses an N‘^/A subgrid

running 400 steps on each of 4 processors, and uses an AT^/IG subgrid running 100 steps on

each of 16 processors, and so on.

Figure 13 shows similar graphs for a scaled problem size, in which the subgrid and

number of steps are held constant for each processor. This yields a larger overall grid, pN^
for p processors, and p times as many total steps, resulting in simulating more atoms over

a longer simulated time.

Running S-Check on the MBE code yielded computational sensitivities in a few routines.

12

As shown in Figures 12 and 13, this code is communication bound, not computationally

bound. Since computation time is such a small fraction of the overall execution time, it was

not beneficial to invest the time to tune the computation portion for only a few percent of

improvement.

The communication is localized to a single routine which first synchronizes all proces-

sors, then messages are only sent to affected neighbors informing them of atoms that are

on the boundary or have crossed the boundary. The routine then enters a receive loop,

calling the MPI “Allreduce” function, synchronizing via a root node, to determine if there

are any incoming messages to process and if communications are completed for this step.

Completion of communication is determined by tallying and comparing total sends and

receives. The pseudo code for the original communication algorithm (ORIGINAL) is shown

in Figure 14.

Although this algorithm is efficient in its explicit use of sends and receives to notify

neighbors of boundary activity and their cancelation, it is inefficient in its synchronization

and determining completion of communication. Since the number of boundary events can

be anywhere from 0 to 4, a node does not know how many, if any, incoming messages to

process. Thus, an abundance of synchronization messages are used to determine when to

stop.

The current communications algorithm suffers from significant overhead in synchro-

nization via the MPI “Allreduce” function. This is a “centralized” function that takes a

parameter from each processor, sends it to a root node which performs a specified operation,

such as add, on all copies and broadcasts the result back to all of the processors to com-

plete the function. Instead of using three separate scalar variables (alLdone, totaLsends,

and total_receives) to synchronize and determine completion, we propose to use two vector

variables, each of length p, where p is the number of processors.

The first vector would be initialized by the first set of sends. A send to processor

i would set the send_vector[?] = 1. After this vector is processed by the function, the

returned rcv_vector[?] contains the total number of receives for processor i. Thus, each

processor knows the number of receives to execute. If any of these receives cause a conflict

that results in sending a cancelation message, a second set of receives is required. Thus,

a second vector would tally these sends and specify the number of cancelation receives

each processor must handle. This revised algorithm requires, at most, two “Allreduce”

synchronizations, and if no atom crosses a boundary, which is most of the time, then only

one synchronization is required. This boundary-crossing information can be incorporated

into the first send vector. The pseudo code for this revised algorithm (REVl) is shown in

Figure 15.

An alternative algorithm is a centralized algorithm. Each processor would send, in one

message, its atom’s destination to the root processor and receive back a single message with

the committed destination or cancelation of its atom. The root processor would collect the

information from all the other p — 1 processors and decide the results of any conflicts and

then send p — I messages back to the other processors with the committed results for each

processor. The pseudo code for this communication algorithm (CENTRAL) at all but the

13

Algorithm ORIGINAL:

send-cnt = num_sent = num_rcv = 0

barrier sync

for each affected neighbor i

send atom destination to i

increment send-cnt; increment num_sent

not-complete = 1

while
(
not-complete

)

Test_how_many_of_my_sends_are_done (send_cnt,sends_done)

if
(
sends.done)

Allreduce(sends_done,alLdone,l)

if
(
alLdone

)

Allreduce(num_sent,total_sent,l)

A 1 1 red uce (n u m_rcv,tota Lrcv, 1

)

if
(
total-sent == tota Lrcv)

not_complete = 0; break;

if
(
rcv_msg_avail)

increment num_rcv

if
(
canceLmsg

)

cancel boundary crossing event

else

process event on or crossing my boundary

if
(
conflict

)

for each affected neighbor]

send cancel msg to node j

increment send_cnt; increment num_sent

Figure 14: Epitaxial Growth Simulation, Algorithm ORIGINAL

14

Algorithm REVl:

clear send_vector

if
(
atom is on or crosses boundary

)

for each affected neighbor i

send atom destination to node i

if
(
crosses boundary

)
send_vector[i] = Cross-Flag

increment send_vector[i]

A 1 1 red uce (send.vector, rcv.vector, p

)

if
(SUM_of(rcv_vector) != 0)

clear send.canceLvector

for i=0 to rcv_vector[my_node]

rcv.msg

if
(
crossed_and_conflict

)

for each affected neighbor]

send cancel msg to node j

increment send_canceLvector[j]

else

accept event info

if
{
Any_Crossing_ln(rcv_vector))

Allreduce(send_canceLvector,rcv_canceLvector,p)

for i=0 to rcv_canceLvector[my_node]

rev atom cancelation msg

Figure 15: Epitaxial Growth Simulation, Algorithm REVl

15

. r Figure 17: Communication time for MBE
Figure 16: Run time lor MBE application, i-

, . , , , . application, algorithm changes, scaling
algorithm changes, scaling problem size

bl
‘

root processor is:

Algorithm CENTRAL:

send atom destination to root processor /* 1 msg (send) */

receive committed destination from root processor /* 1 msg (rev) *

/

This centralized algorithm also results in a deterministic number of communications for

each processor. Although the total amount of communication is less than the distributed

algorithm, it implicitly imposes a sequentialization of the messages at the root processor

for the p — 1 send messages. Instead of sending p — 1 individual response messages, the

root node can obtain some efficiency, via concurrency, by sending a single, although larger,

broadcast message containing all atoms and their committed positions.

As the number of processors increases, the communication time for the centralized al-

gorithm should increase proportionally. The communication time for the distributed algo-

rithm should stay nearly constant, independent of the number of processors. So, initially

the centralized algorithm should perform better, but as the number of processors increases

sufficiently, the distributed algorithm should perform better. We have not yet implemented

the distributed communications algorithm since our current cluster size is still relatively

small. We plan to implement and test it, once our cluster size significantly increases, in the

very near future.

The results of the revised (REVl) and original communication algorithms are illus-

trated in Figures 16 and 17. These figures show that the complete revised algorithm,

16

Figure 18: Run time for MBE application,

centralized algorithm, scaling problem size

Figure 19: Communication time for MBE
application, centralized algorithm, scaling

problem size

shown as the “Any.CrossingJn” curve, can achieve a 75% to 80% communications accel-

eration over the original algorithm on our SGI cluster subset. Without the “SUM_of” and

“Any_Crossing_In” tests in the REVl algorithm to avoid a second “Allreduce” synchroniza-

tion, we only achieve about a 50% to 60% acceleration, shown as the “Always 2 Syncs”

curve. The “Any.CrossingJn” test contributes only about 2%. The overall execution time

shows an acceleration of from 60% to 70% for the REVl communications algorithm com-

pared to the original. This REVl algorithm results in a more balanced execute cycle, where

the communication represents about 82% of the original algorithm, it now represents about

67% for the REVl algorithm. But the REVl algorithm suffers the same problem as the cen-

tralized algorithm, since they both utilize centralized communications, they will both incur

communication time increases proportional to the increase in the number of processors.

The results of the centralized (CENTRAL) communication algorithm are illustrated

in Figures 18 and 19. These graphs show that the CENTRAL algorithm achieves a 75%
to 85% communication acceleration over the ORIGINAL algorithm on our cluster. This

acceleration is very similar to the REVl algorithm’s performance, as expected, and so is

the overall execution time acceleration of 60% to 70%.

An alternative distributed algorithm is to always send messages to your neighbors,

resulting in 8 sends per processor (A/^, W, and 4 diagonal neighbors) and to require

that a response be sent back for each atom crossing a boundary, whether it is canceled or

committed instead of just if it is canceled. This change would result in a fixed number

of sends and a deterministic number of responses, thus eliminating the need for additional

synchronization messages. The pseudo code for this communication algorithm (NEWS) is

shown in Figure 20. We didn’t have time to investigate the run-time performance of this

algorithm.

17

Algorithm NEWS:

send to all neighbors /* 8 msgs (sends)*/

for
(
each neighbor rcvd a msg

)
/* 8-12 msgs (revs)*/

rcv.msg

if
(
neighbor atom in corner crossing another neighbor boundary

)

accept event info increase expected rev msg by 1

else if
(
atom crossing boundary

)

for each affected neighbor /* 1 or 3 msgs (sends) */

if
(
crossed_and_conflict

)

send cancel msg to neighbor

else

send commit msg to neighbor

else if
(
atom on boundary

)

accept event info

else if
(
no atom near boundary

)

NULL (continue)

Figure 20: Epitaxial Growth Simulation, Algorithm NEWS

4.3 Evaluation

The MBE parallel code is a fine-grained application; a small amount of computation is

followed by a small amount of communication. This is generally a disqualifying property

for candidacy as a parallel code. Our measurements clearly show that a single processor

version is faster than the parallel versions. The driving force here is memory capacity

instead of the more common execution cycle capacity. For example, a 32 processor parallel

version, with each processor having 512 MBytes of memory, can achieve a 16 GByte effective

memory for this simulation, far more than is available on any single processor.

5 Conclusion

Based on our analysis of two applications ported to our heterogeneous ATM cluster of

workstations we are pleased with the performance of these NIST applications on the cluster.

These applications, although vastly diflferent, both ported well and for some subsets of our

cluster performed better than in their original parallel environments.

The 3D Helmholtz Solver application is a coarse-grained code and scales well, as ex-

pected. Better performance and system utilization is achieved when a homogeneous subset

of machines are selected, since computation and communication are implicitly synchronized

and less waiting occurs. Because large bursts of communications occur, we are able to

benefit from using the ATM network.

The MBE code is a fine-grained code and would generally not be considered for par-

18

allelization in a distributed environment. As such, the parallel version is slower than the

single processor version, although the parallel version does scale as processors are added.

The benefit from parallelizing this code is from the aggregate memory rather then total

compute cycles. Although the parallel version is highly dependent on communication, it is

not clear if any benefit is derived from our ATM network since the amount of each data

transfer is small. The network architecture is more important to the efficiency of this appli-

cation. The MBE code would map very efficiently onto a mesh architecture, accommodate a

switched architectm-e reasonably, whereas a shared media architecture would be ineflacient.

Acknowledgments

We would like to thank Karin Remington and Isabel Beichl for their assistance with un-

derstanding the 3D-Helmholtz solver and Epitaxial growth applications. Both researchers

have spent many hours working with us during the porting of the programs to our cluster.

References

[1] C. Fischberg, C Rhie, R. Zacharias, P. Bradley, and T. DesSureault, “Using Hundreds of

Workstations for Production Running of Parallel CFD Applications”
,
Proc. of Parallel

CFD ’95, Pasadena, CA, June 1995.

[2] D. Becker, T. Sterling, D. Savarse, J. Dorband, U. Ranawake, and C. Packer, “BE-

OWULF: A Parallel Workstation for Scientific Computation”, Proceedings of the In-

ternational Conference on Parallel Processing, Urbana-Champaign, 111, Vol. I Ar-

chitecture, pp 1 11-114, August 1995 (a version of this document is available at

http://cesdis.gsfc.nasa.gov/linux/beowulf/icpp95-.html).

[3] Pentium Pro Cluster Workshop, Sponsored by Ames Laboratory and Iowa State Uni-

versity, Des Moines, Iowa
,
April 10-11, 1997 (Information available for a limited time

at http://www.scl.ameslab.gov/workshops/index.html).

[4] “Issues and Challenges in ATM Networks” Special Issue Communications of the ACM,
Vol 38, No. 2, Feb 1995.

[5] R. Snelick, “S-Check: a Tool for Tuning Parallel Programs,” Proceedings of the 11th

International Parallel Processing Symposium (IPPS 97), Geneva, Switzerland, April

1-5, 1997, pp 107-112.

[6] A. Mink, Operating Principles of MultiKron II Performance Instrumentation for

MIMD Computers, National Institute of Standards and Technology, NISTIR 5571, De-

cember 1994 (available at http://www.multikron.nist.gov/multikron/multikron.html).

[7] A. Mink, G. G. Nacht, and R. J. Carpenter, Operating Principles of

the SBus MultiKron Performance Interface Board, National Institute

19

of Standards and Technology, NISTIR 5652, May 1995 (available at

http://www.multikron.nist.gov/multikron/multikron.htmI)

.

[8] A. Mink and W. Salamon, Operating Principles of the PCI Bus MultiKron Performance

Interface Board., National Institute of Standards and Technology, NISTIR 5993, March

1997 (available at http://www.multikron.nist.gov/multikron/multikron.htmt)

.

[9] K. Remington Bennett, “Fast Direct Solution of Three-Dimensional Poisson and

Helmholtz Problems on Distributed Memory Machines,” Proceedings of Sixth SIAM
Conference on Parallel Processing for Scientific Computing., Norfolk, Virginia, March

22-24, 1993.

[10] R. Pozo and K. Remington, “Performance Characteristics of Fast Elliptic Solvers on

Parallel Platforms,” Proceedings of the 1st Euro PVM User’s Group Meeting., Rome,

Italy, 1994.

[11] Zagha, Lcirson, Turner and Itzkowitz, “Performance Analysis Using the MIPS RIOOOO

Performance Counters,” Supercomputing ’96 Conference Proceedings., Pittsburgh, PA,

November 17-22, 1997.

[12] R. Snelick, J. Ja’Ja’, R. Kacker, and G. Lyon, “Synthetic-perturbation techniques for

screening shared memory programs,” Software - Practice and Experience, 24(8) (1994)

679-701.

[13] R. Snelick, M. Indovina, M. Courson, and A. Kearsley, “Tuning Parallel and Networked

Programs with S-Check,” Proceedings of the 1997 International Conference on Paral-

lel and Distributed Processing Techniques and Applications (PDPTA ’97), Las Vegas,

Nevada, June 30 - July 3, 1997.

[14] I. Beichl, Y. Teng, and J. Blue, “Parallel Monte Carlo Simulation of MBE Growth,”

International Parallel Processing Symposium, April, 1995.

20

' '

.'iv;,:

'

'.

